Electronics

The electronics work hidden in the car. It controls all the components to maximum performance at all times.

This year's electronic systems is ranging from data logging to electronically controlled gears and clutch. All around the car we have placed many different sensors that provide vital information to all control units in the car. The sensors provide information about the steering, acceleration, temperature, pressure and speed. Some of these data are used to regulate various functions, including the amount of fuel to the engine and when the clutch and gearbox will be activated for maximum power output. The logged information can be extracted to a computer. Using proprietary software (written in Java), we can analyze measurements and obtain information about both the driver and the driving behavior of the car in different situations. Using this, we can improve both the drivers and the car.

In addition to being able to retrieve the stored data, we have a tele that sends some data in real time. This is especially important during the testing phase, so that we can see trouble before it becomes serious, and send configuration information to the car.

Girsystemet er som nevnt også elektronisk styrt. Selve aktiveringen forgår ved hjelp av pnaumatikk (trykkluft). Fordelen med elektronisk styring er at systemet kan gire på under et tidels sekund! I tillegg får vi minimalt med tap av motorkraft og reduserer sjåførens arbeidsmengde, som da kan fokusere fullt og helt på å holde bilen mellom kjeglene. For å forbedre motorresponsen ytterligere, lager vi også i år et variabelt innsug. Det innebærer at lengden på innsugsrørene kan endres, for at vi til enhver tid skal ha maksimalt tilgjengelig moment når turtallet varierer. Vi bruker et spennende design basert på halvrør og en lineærmotor.

The transmission system is also electronically controlled. The activation is executed using pnaumatikk (compressed air). The advantage of electronic governance is that the system can shift gears in less than a tenth of a second! In addition, we minimize loss of engine power and reduces the driver's workload, which can then focus entirely on keeping the car between the cones. To improve engine response further, we make this year a variable intake. This means that the length of the intake pipe can change, so that we at all times have the maximum available torque when the speed varies. We use an interesting design based on a linear motor.

For å utvikle alle de elektroniske modulene setter vi først opp skjematikk for de ulike kretskortene.  Komponenter velges og kobles sammen med hverandre. Deretter blir komponentene lagt ut på et kretskort, ved hjelp av samme programvare. Vi bruker her et profesjonelt system som heter Altium Designer, som vi har fått sponset av firmaet 4test AS. Selve tilkoblingene mellom komponentene routes (linjer mellom portene tegnes opp), og deretter eksporteres designet til produksjonsfiler. Disse bruker vi til å frese kortene i en spesiell fres laget for nettopp dette, som vi har tilgang til ved Institutt for Elektronikk og Telekommunikasjon ved NTNU. Deretter blir alle komponentene loddet på prototypekretskortet. For å spare vekt og komponent- og produksjonspris, bruker vi stort sett bare overflatemonterte komponenter. De minste standardkomponentene er kun 1,6 x 0,8 mm store, og vi tar i bruk mikroskop og spesielt loddeutstyr vi har fått av Elfa når vi lager prototypene. Disse prototypene er essensielle for å luke ut eventuelle feil og mangler i systemet, og er dermed en avgjørende del av utviklingsprosessen.

To develop all the electronic modules, we first set up schematics for the various circuit boards. Components are selected and connected with each other. Thereafter the components are laid out on a circuit board, using the same software. We use a professional system called Altium Designer, which we have got form our sponsor 4test AS. The connections between components is routed (lines drawn between the ports), and then exported to the designed output files. These we use to throw the cards in a special cutter made ​​for just that, as we have access to the Department of Electronics and Telecommunications at NTNU. Then all the components are soldered on the prototype circuit board. To save weight, and component and manufacturing cost, we use mostly surface mount components. The smallest standard components is only 1.6 x 0.8 mm long, and we use a microscope and special soldering equipment we have received from Elfa when we create prototypes. These prototypes are essential to remove any deficiencies in the system, and is thus an essential part of the development process.

The systems also need software that runs on the micro controllers. We write the software ourself, and it is this that determines how all the components interact with each other and perform their respective tasks. We use the programming language C, which is a so-called low-level language. That means we can program micro controllers down to bit rate, and thus make the most of the processing power. The development takes place during the testing, so we always get validated that it works as it should. When the software and the prototype is working properly, we make a final PCB design which we will send to professional production. Simpro does this for us. There components are mounted and soldered professionally, and treated for a long lifetime.

                                                                                    Prototype til variablet innsug

 

                                                                               Ferdigfreste prototypekretskort

 

English